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The long-time tails for the mutual diffusion coefficient, the thermal diffusivity, 
the thermal conductivity, and the shear and longitudinal viscosities (from which 
the tail of the bulk viscosity can be calculated) of a nonreactive binary mixture 
are calculated from mode-coupling theory, and compared with a prior calcula- 
tion by Pomeau. Three different choices of the thermal forces and currents are 
considered, with the results found to take their simplest form in the case of the 
de Groot "double-primed set." The decompositions into the kinetic, potential, 
and cross terms are given. 
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1. I N T R O D U C T I O N  

During a visit at the Los Alamos National Laboratory in the summer of 
1984, J.J. Erpenbeck asked me to consider extending the mode-coupling 
calculations by Ernst et aL ~1) of the long-time tails of the transport correla- 
tion functions for a pure fluid to the case of a binary mixture, for which he 
was beginning to undertake some molecular dynamics calculations. I soon 
became aware of the paper by Pomeau ~2) reporting similar calculations 
within the framework of the Landau-Placzek theory. Unfortunately, 
however, it also soon became clear that that paper, although correct in the 
large, contained so many apparently typographical errors in the relevant 
formulas as to necessitate careful recalculation before the results could 
safely be used. The results of such a recalculation, based on the mode- 
coupling formalism, are presented here. In addition to the corrected results 
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being of some interest in their own right, the results for the hydrodynamic 
modes of the mixture may be useful in other connections. The decomposi- 
tion of the asymptotic time correlation functions into their kinetic, poten- 
tial, and cross terms (omitted in ref. 2) is also given, since that is sometimes 
of interest in comparing with the results from molecular dynamics studies. 
Finally, careful attention is given to three alternative choices of the thermal 
forces and currents. For one of these, the "double-primed set" given by de 
Groot, ~3) the results take on reasonably simple form. Some of the present 
results have been used in a recent paper by Erpenbeck. (4) 

The organization of the paper is as follows. The hydrodynamic 
equations and the several choices of the thermal forces and currents are 
given in Section 2 for a general multicomponent, nonreactive mixture. In 
Section 3 the microscopic currents appearing in the Green-Kubo formulas 
are discussed for each of the force-current choices, and the mode-coupling 
formalism of Ernst et aI. is introduced. The equations are specialized to the 
case of a binary mixture in Section 4, and the hydrodynamic modes 
required for use in the mode-coupling formulas are calculated. The long- 
time tails are calculated in Section 5 for the mutual diffusion coefficient, in 
Section 6 for the thermal diffusivity, in Section 7 for the thermal conduc- 
tivity, Section 8 for the shear viscosity, and in Section 9 for the longitudinal 
viscosity. Some calculational details are relegated to two appendices. 

2. H Y D R O D Y N A M I C  EQUATIONS 

The system initially considered here is a d-dimensional fluid consisting 
of n~ chemically nonreactive species of particles in the absence of external 
forces. The hydrodynamic equations used here are mostly those of de 
Groot (ref. 3, w167 

The equation of continuity for species a is 

~Pa 
= - V "  PaVa 

Ot 

with t denoting the time, Pa and va the mass density and flow velocity, 
respectively, of species a, and V the d-dimensional gradient operator. 
Summing over all n~ species leads to the overall equation of continuity 

ap 
- - p V . v  (1)  

dt 

in which p = Z Pa is the overall mass density, 

1 
V=--~paVap (2) 
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is the barycentric average flow velocity, and 

d 
Z = ? 5 + u  

is the substantive time derivative. With the introduction of the mass 
fractions 

w~ = Pa/P 

then Eqs. (1) and (2) lead to 

d w  a 
= - v .  Jo (3)  P dt 

with 

aa = p~(va - v) 

denoting the barycentric diffusion current of species a. 
The equation of motion is 

(4)  

du 
p ~ = - v .  p (5) 

in which P is the pressure tensor. 
The entropy transport equation is 

ds 
p ~ =  - V . J , +  a~ (6) 

in which s is the specific entropy, Js the entropy current, and ~s the rate 
of irreversible entropy production. It is convenient to write the latter as the 
sum a~= aT+ O" 7 of a contribution aT from thermal transport processes 
and another ~, from viscous processes. 

Under the assumption of local equilibrium, p, s, and any ns - 1 of the 
mass fractions, say {wa, a = 1, 2,..., n s - 1  }, may be regarded as a set of 
independent intensive thermodynamic variables specifying all other inten- 
sive thermodynamic field variables. Together with the flow velocity v they 
determine the hydrodynamic state. Equations (1), (3), (5), and (6) form a 
complete set of n~ + d + 1 nonlinear partial differential equations for those 
hydrodynamic field variables, provided that the diffusion currents Ja, the 
entropy current Js, the pressure tensor P, and the entropy productions ~r  
and ~ can be expressed in terms of the field variables. 
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2.1. Linear Phenomenological  Relations 

In the thermodynamics of irreversible processes it is postulated that 
the needed additional relations take the form of a linear dependence of the 
currents and the pressure tensor on the gradients of the field variables. For 
the pressure tensor the standard Newtonian form is 

P = p l -  t/[Vv + (Vv)t] + ( 2 t / - ( ) ( V ' v )  1 

in which p denotes the scalar pressure, 1 the d-dimensional unit tensor, t/ 
and ( the coefficients of shear and bulk viscosity, respectively, and (Vv)* 
the transpose of the dyadic tensor Vv. The corresponding entropy produc- 
tion is 

1 
a~ =-~{~[Vv+ ( V v ) t ] - ( 2 ~ - ( ) ( V . v ) l } : V v  

in which T denotes the thermodynamic temperature. 
For better or worse, there are a number (ref. 3, w167 45, 52, and 53) 

of ways of expressing Ja, Js, and aT in terms of the field variables. Three 
are of interest here. Following de Groot's notation, we will refer to them 
as the unprimed, primed, and double-primed sets. They all use the same 
diffusion currents and thermal "force," but they differ in their "heat 
current" and diffusion "forces." As a result, there are corresponding 
differences in the "thermal conductivities" and "thermal diffusivities." Thus, 
there is no little confusion in the literature regarding the meaning of.the 
latter terms. 

2.1.1. Unprirned Currents and Forces. In the unprimed 
system of currents and forces, the entropy current is written as 

1 J 

in which ~a is the specific chemical potential of species a, and Jq is the 
"heat current." The "forces" are 

X u= -(1/T) VT= - V l n  T 

x o  = - rv( o/r) 

and the linear relations are 

J q  = LuuXu + ~ LuaX a 
a 

Ja = LauXu + ~ LabXb 
b 
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The coefficients are not all independent, being constrained (ref. 3, w167 46) 
by the Onsager relations 

La,= Lu~, Lab = Lb~ (8) 

as well as the summation conditions 

Z L a , = 0 ,  Z L a b = 0  (9) 
a a 

The thermal entropy production is 

a T = ~  J o ' X . + 2  J . ' X :  (10) 
a 

The requirement that this be positive definite for any values of the forces 
leads (ref. 3, w to additional constraints on the phenomenological coef- 
ficients, namely 

L=a>~0 

Lu, >/0 

L..Loo-L o> O 
L a a L b b  - -  L Zb >~ 0 

(11) 

As noted by Erpenbeck, (4) this set of forces and currents is particularly 
convenient for molecular dynamics calculations of the Green Kubo time 
correlation functions. 

2.1.2. S ing le -Pr imed Currents and Forces. In this system 
(ref. 3, w the entropy current is written as 

j = l j ,  
T q (12) 

while the diffusion currents are the same as in the unprimed set, 

J'a = J ,  

Comparing Eqs. (7) and (12), we see that 

J;:a -Z oJ= 
a 

The requirement that the entropy production have the same form as in 

8 2 2 / 5 7 / 3 - 4 - 1 7  
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Eq. (10), except with single-primed currents and forces replacing the 
unprimed ones, then leads to the single-primed forces 

x;=xu= - L w  
T 

X ;  a = X a -q- [ t a X  u = - - V # a  

Note that the single-primed diffusion force is just the negative gradient of 
the chemical potential. The single-primed linear phenomenological rela- 
tions are 

J'q = L'uuX'u + ~, Z'uaX'a 

a (13) 
S'a = L'o X'u + L'o X'  

b 

The connections between the single-primed and the unprimed coefficients 
are easily found to be 

a a b 

L'ua = Lua - ~. Lab#b (14) 
b 

L'ab = Lab 

with constraints analogous to Eqs. (8), (9), and (11). This single-primed 
system is the one used by Pomeau. (2) We use it here in order to be able to 
compare with his results, and also because it appears to be the most 
convenient one for the calculation of the hydrodynamic modes. 

2.1.3. Double-Pr imed Currents and Forces. In this system 
(ref. 3, w the entropy current is written as 

l ( j q +  j , , )  (15) as:   rsa 
with sa denoting the partial specific entropy of species a. The diffusion 
currents are again the same as before, 

J :  = J'a = J a  

Comparing Eqs. (15) and (7), it is seen that 

J q = J q - E  haJa 
a 
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with ha denoting the partial specific enthalpy of species a. The entropy 
production is again of the same form as Eq. (10), but with the double- 
primed currents and forces replacing the unprimed ones. The forces are 

Since 

x'=x'.=x.= _Lv:r 
T 

X~ = X a + h a X  u = - - ( V ~ a  + s a V T  ) 

__(*a) 
S a =  

\ ~T/p,{wb} 

the double-primed diffusion force is often written as 

vm 2aT/p,{w   

The quantity on the right side is sometimes called the "isothermal gradient" 
of #~, since it is the part of the gradient not due to the temperature 
gradient. The linear phenomenological relations are 

tt tr tt r t t  Jq = L.~,Xu + ~ LuaXa 
a 

J2 = L'~X2 + 2 L;aXg 
b 

The connections of the coefficients to the unprimed ones are 

L'~u=Lu~-2 E Luaha+~ E Labhahb 
a a b 

L'a = Eva - Y, Labhb (16) 
b 

L'a = L~a 

The Onsager relations, summation conditions, and positivity conditions are 
identical in form to those for the unprimed set, Eqs. (8), (9), and (11). This 
system is of interest here in that in it the mode-coupling results for the 
long-time tails of the time correlation functions in the Green-Kubo 
formulas for the linear phenomenological coefficients take their simplest 
form. 



682 Wood 

3. G R E E N - K U B O  A N D  M O D E - C O U P L I N G  F O R M U L A S  

The Green-Kubo formula, expressing a transport coefficient L~1~2 in 
terms of an integral over the corresponding time correlation function 
p.,~2(t), has the general form 

fo L~I~z= fl p~l~2(t) dt (17) 

with fl = 1/kBT, kB denoting the Boltzmann constant, and with the time 
correlation function being an equilibrium ensemble average of a product of 
two microscopic currents, 

1 
P~1~2 = t-lim ~ (J=l(0) ,J~2(t) ) (18) 

Here ~1 and ~2 are u, a, or b in the case of the thermal transport coef- 
ficients Luu, L~a, and Lab, and can both be taken equal to q if we adopt 
the notation q = L, , .  The currents are functions of the mechanical phase 
variables of the particles. The notation J~,(0) means that the current is 
evaluated for a given "initial" phase, while J~2(t) indicates that the current 
is evaluated for the phase corresponding to the dynamical evolution of the 
system for a time t starting from the "initial" phase. The ( . - . )  denotes a 
grand canonical average (i.e., for fixed values of the volume V of the 
system, the chemical potentials, and the temperature) over the "initial" 
phase, as specified by the numbers N~ of particles of each species, the POSi- 
tions r~, and the momenta p~ of the particles, i = 1, 2,..., Z ,  Na. Indices i, j,... 
designate particles, while indices a, b .... designate species. In Eq. (18), t-lim 
signals the necessity of taking the thermodynamic limit (V ~ ~ at constant 
T and {#~}) prior to doing the infinite-time integral in Eq. (17). The t-lim 
notation will be omitted in the sequel. 

For some purposes it is desirable to separate the microscopic currents 
J~ into kinetic contributions J ( f )  and potential contributions J(~), e.g., 

Equations (17) and (18) can then be similarly decomposed into 

fo 
p(An)(t] _ 1 (~(A)(O) ~;(B)ft) b 

p~2(t) = (KK)  (OK) ~((b~b)(,~ p~l~ 2 ( t )  -~- p (~f~2)(t) -~- (t) + P~l~2tt/  
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in which A and B are K or ~b. Finally, in the case of the thermal transport 
processes and depending on which set of forces and currents is under con- 
sideration, the time correlation functions and microscopic currents may 
appear in their unprimed versions, as above, or in their single-primed (e.g., 

t ^ t ( A B )  P~2,  P~2 , j~](A)) or double-primed versions. 
It seems to be an unfortunate fact that no single reference in the 

literature is a completely reliable source for the formulas for the currents 
~r for a mixture. In addition to outright errors and misprints, confusion 
can arise due to the various possible choices of forces and currents. The 
following subsection gives what I believe to be the correct formulas for the 
primed choice. In Section 3.2 those formulas are transcribed into the 
unprimed set for subsequent use. 

The microscopic currents for the viscosity coefficients are of course 
unaffected by the choice of the diffusion and thermal forces and currents. 
The expressions given by Steele (5) and by Zubarev (6) for the shear viscosity 
can be shown to be equivalent to 

~,  = Txy (19) 

in which Txy is the xy component of the dyadic tensor 

1 ~. ~ ,  r0V,~b U (20) T = Z i  m i v i v ' -  ~ " j 

The mass of particle i is denoted by m i, and depends on its species. A sum 
such as Z l  a) denotes a sum over particles of species a only, while ~ i  
indicates a sum over all particles of all species. The relative position r i - r  i 
is abbreviated as r 0. The potential energy of the system is assumed to be 
pairwise additive, with ~b o denoting the interparticle potential energy of 
particles i and j ;  it of course depends on their respective species identities. 
The gradient with respect to r~ is denoted by V~. The prime on the sum 
over j indicates the usual omission of the self-interaction term j =  i. It 
should be noted that these expressions are identical to those for a pure 
fluid in ref. 1, the only difference being that here the mass of particle i 
depends upon its species identity. The Green-Kubo formula for q in 
Eq. (4.3d) of ref. 2 appears to be equivalent to that used here, providing 
that the factor d-~ in the former is replaced by ( d -  1)-1. 

Following ref. 1, it will be convenient to write the Green-Kubo for- 
mulas for the longitudinal viscosity D~= [ 2 ( d -  1 )q /d+  ~]/p in the form 

v ,  = f p,(t) dt 
P Vo 

p,( t )  = ( Z ( o )  r  
V 
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so that the correlation functions for the three viscosities are related by 

2 ( d -  1 ) 
p,(t) - ~ p . ( t )  + pc(t) (21) 

In the sequel, the long-time approximations for pt(t) and p.( t )  will be 
obtained, with the last equation then permitting the calculation of p~(t). 
There is substantial agreement among Pomeau, (2) Zubarev, (6) and 
McLennan (7) that the appropriate Green-Kubo current in Pt is 

0p ~p 

in which s = ~e e~ is the Hamiltonian function, with e = ( ~ ) / V  denoting 
the equilibrium internal energy density, and 

1 rniv2i + 1 ~ ,  e~=~ ~ . ~bu (23) 
J 

is the energy of particle i. The quantity M,  = maN a = ~(a) m. is the mass of 
species a, and p~= ( M ~ ) / V .  Finally, in Eq. (22), p is the equilibrium 
pressure, regarded as a function of e and Pa, a = 1, 2,.., n~. 

3.1. Single-Primed Microscopic Currents 

Green (8~ has given formulas for the single-primed Green-Kubo 
currents. The form of his equations is quite different from that used here; 
but, with use of the conservation of momentum along any given dynamical 
trajectory, his results for the thermal transport coefficients can be put into 
the form of Eqs. (17) and (18) with currents 

t J a = J a x  
(24) 

Jux 

Here J.x and ' '  J.x denote the x components of the vectors Ja and J'u given 
by 

(a) 

Ja= 2 mivi--Wa Z mivi 
i i 

J"  = J .  - ~ / ~ . ] .  (25) 
a 

J~ = e i v i -  -~ ~' ro-Vi(9 O- V i 

�9 j i 
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and h is the macroscopic specific enthalpy of the system. Comparing these 
currents with those in Eqs. (4.4) of ref. 2, it appears that the diffusion 
currents are equivalent; but Pomeau's heat current apparently contains 
several misprints, and it is not clear if it is intended to be the same as that 
used here. 

3.2. Unprimed Microscopic Currents 

If Eqs. (14) are solved to express the unprimed coefficients Lal~2 in 
terms of the single-primed coefficients L'~l~2, and if the latter are then 
expressed in terms of the primed currents p"~ by means of Eqs. (17) and 
(18), one can identify the unprimed microscopic currents as 

y~ = J 'a = Jax 
(26) 

Ju = f u  + Y~ m J ' o  = J.~ 
a 

with use also of Eqs. (24) and (25). These relations can be shown to be 
equivalent to those given by Zubarev, (6) taking into account that he uses 
VT -~ for the thermal force instead of - V  in T. 

3.3. Mode-Coupl ing Formula 

Ernst et al. (1) have derived the mode-coupling formula 

1 dk 
P ~ 2 ( t ) ~ f  ~_, [J~,a~(k)a~(-k)][a~(-k)a.(k),~2] 

x exp{ [z,(k) + zv(k)] t} (27) 

in the limit of an infinite system. The quantities a,(k) are the microscopic 
hydrodynamic eigenmodes, to be calculated in Section 4. They depend on 
the microscopic phase variables {ri} and {Pi} and on the d-dimensional 
Fourier wave vector k, and are enumerated by the index #. The double sum 
is over all ordered pairs of these modes. The z,(k) are the corresponding 
eigenvalues. The integral is over the infinite d-dimensional Fourier space. 
The If(k) ,  g(k')]  inner product is defined by 

1 
[ f (k) ,  g(k')]  =-~ ( f (k )*  g(k ' ) )  (28) 

for a finite system, with the asterisk denoting the complex conjugate. 
Translational invariance leads to the property 

I f (k) ,  g (k ' ) ]  = I f (k) ,  g(k)] (~kk' 
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for microscopic functions f and g of the type considered here, with 6kk' 
denoting the d-dimensional Kronecker delta function. 

The validity of Eq. (27) requires that the following conditions be 
satisfied by the hydrodynamic modes and the microscopic currents: 

1. The modes must be orthonormal in the sense of the inner product 
of Eq. (28), i.e. 

[au(k), a~(k)] = 6u~ (29) 

with 6uv being the usual one-dimensional Kronecker delta function. 

2. The currents must be orthogonal to the modes, 

[J~, au(k)] = 0 (30) 

3. The currents must have vanishing equilibrium values, 

[0r 1] = 0  (31) 

4. H Y D R O D Y N A M I C  M O D E S  

4.1. Special ization to a Binary Mix ture ,  Linearization, and 
Fourier Transformat ion 

The discussion to this point has considered a general n,-component 
mixture. For the binary (n~---2) case, the linear relations of Eqs. (13) 
reduce, with the aid of the primed versions of the reciprocal and summa- 
tion relations (8) and (9), as well as the relation 31 + J 2 = 0  [as follows 
from Eqs. (2) and (4)], to 

1 
P ! ^ I Jl =J~ = -L11V/x--~L~.VT 

1 'vr ~L' ' L - -  V T  J q  = - lu  uu 

using the notation fi =#~- / /2 -  Equations (14) and (16) become 

L'.u = L.. - 2L1./i + Lll/~ 2 

L ' I , = L I ~ - L I I f i  (32) 

Z'll---LII 
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and 

L,~u = Lu. - 2L1./~ + Lll  i 2 

L ~ u = L l . - L 1 1 1 7  

L~'~ = Z l l  

(33) 

with ~ = h i  - h2 = / 2  - T f i r .  

With use of Eq. (12) and the abbreviation w = Wl, the hydrodynamic 
field equations now become 

@ 
- -  = - p V "  v 
dt 

dw 
p = - v .  J'l 

TdS  1 j ,  p -~=--V'Jtq-~---~ q'VT-~- Ta 

(34) 

du 
pp7= - v .  P 

At this point it is appropriate to compare these equations with those 
of Pomeau Eref. 2, Eqs. (2.5)]. There appears to be substantial agreement 
if we make the identifications L'u = D, L'lu = DI,  and L',, = ~c, except for 
several apparent misprints, and except for his omission of the last two 
terms in the equation for ds/dt. The latter has no consequences in the 
subsequent analysis, as those terms disappear when the equations are 
linearized. 

The next step is the "acoustic" linearization of the equations, in which 
the nonequilibrium state of the fluid is considered to be a small perturba- 
tion on a spatially uniform, time-independent equilibrium state in which 
the fluid is at rest. The local flow velocity v, the deviations 6p = p -  Po, 
6w = w - w  o, 6s = s - s o ,  etc., of the thermodynamic functions from their 
unperturbed values (the latter denoted temporarily by the subscript zero), 
and all spatial and temporal gradients of the field quantities are treated as 
small ("first-order") quantities; products of two or more of them are 
neglected. As a result, the substantive derivative d/dt reduces to the partial 
derivative O/Ot, and the transport coefficients appearing to the right of the 
gradient operators in Eqs. (34) can be taken to the left. With the subscript 
zeros now dropped, so that from this point all field quantities except v 
appearing in the equations refer to the unperturbed state, the hydro- 
dynamic equations become 
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alp 
- -  = - p V "  v 
Ot 

T! 

p --~-- = L'll V 2 

06s L 'uu 
pT- -~=L' lu  v2 ~ +--~--V 2 3T 

p~-~= - V @ + r / V 2 v +  rl-k-~ V V ' v  

Now a d-dimensional Fourier transformation (under the usual 
assumption of a finite periodic system, or an infinite system in which the 
perturbations vanish sufficiently rapidly at infinity) gives, with 

pk(t) = f dr 6p(r, t) exp( - ik .  r) (35) 

etc., the system of d + 3 ordinary differential equations 
dp~ 

= --pik 'Vk 
dt 

' L' dWk LI1 k2/~ k _ ~_~ k2Tk 
dt p 

dSk L'I~ k2~k _ k2Tk 
dt pT 

dVk i kpk -- q- 2 _~1/d- 2 ) 
d, p pkvk-- 

kk-vk 

for the time dependence of the Fourier components of the d velocity com- 
ponents and the three thermodynamic variables p, w, and s. Actually, the 
Fourier components of six thermodynamic quantities (/~, T, and p, in 
addition to the first three) appear, any three of which can be taken to be 
independent in the thermodynamic sense. 

With the choice of w, p, and s for this purpose, standard thermo- 
dynamic calculations l ead  to the following expressions for the other 
Fourier components: 

pk=-~  pk + PZ sk + - [tp Wk 
Cp s 

Z T T/~ r 
Tk -- Pk + --  Sk + - -  Wk 

pCp Cp Cp 
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In these equations the notation is mostly that of ref. 2; c denotes the 
adiabatic sound speed, c2= (@/OP)w,s; Cp is the constant-pressure specific 
heat capacity; X=- -~T=(T/p) (Op/OT)p  .... with ~ denoting the usual 
thermal expansion coefficient. The subscripts p, T, and w on /i denote 
the corresponding partial derivatives with the other two variables held 
constant. 

The system of differential equations with constant coefficients (all 
evaluated in the unperturbed state) now becomes 

dpk = k2( 43 Pk Ai- A4Sk + 45 Wk) -- PC 2ik" Vk 
dt 

ds k k 2 

dt p 

dwk k 2 
dt p 

(Al Pk-1- AsSk q- A~wWk) 

(A2 Pk + A'ssk + A wWk) 

du k 
dt 

~ Iikpk +rlk2vk + ( ~ - ~ l + ( ) k k ' v k ]  

(36) 

Here the abbreviations 

Js = -  L L ~ + - ~ -  
Cp 

1 
Zl's = - -  (L',I TfiTq- L'lu) Cp 

4w = ~T4's + L'~I fiw 

4'w= firAs + L'lu TCw 

(37) 

follow the notation in ref. 2, and in addition we use 

41='~. Z lu#p - -~As  

42= - - ~  3; + Li, ;,p 

Z 

43 = 2zc m (4 ,  + ~42) 
Cp 
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A 4 ~-- Z C 2  (Arw -[- ~Aw) 
r 

= + 

Cp 

The normal modes of this system of ordinary differential equations with 
constant coefficients constitute the macroscopic hydrodynamic modes of 
the physical system. 

4.2. Macroscopic Hydrodynamic Modes 

In matrix form the system (36) becomes 

dB(t) 
= M B ( t )  (38) 

dt 

in terms of the (d+  3)-dimensional column vector 

B(t) = [pd t ) ,  sk(t), w d t ) ,  Vk(t ) " ~, Vk(t) " ~• ..... Vk(t) " ~• t 

and the matrix (written out here for the d =  3 case) 

A3 k2 

- A 1 k2/p 

M = - -Azk2 /p  

-- ik/p 

0 

0 

A4 k2 A s k  2 - i k p c  2 0 0 \ 

- Ask2/p - A' 2 wk /p o o o 
- A ' k 2 / p  - A w k 2 / p  0 0 0 

0 0 - D t k  2 0 0 

0 0 0 - vk 2 0 

/ 0 0 0 0 -- vk 2 

(39) 

in which 1~ is the unit vector in the direction of k, and l~• i = 1, 2,..., d -  !, 
is a set of mutually perpendicular unit vectors transverse to 1~. The 
kinematic viscosity is v = q/p. 

Let ~r and ~i, i =  1, 2 ..... d +  3, be, respectively, a set of left (row) and 
right (column) eigenvectors of M with corresponding eigenvalues z~, so 
that 

~ i  M = Z i ~  i and MOoi = z i ~  (40) 

It will be later verified that these eigenvectors can be chosen to form a 
normalized biorthogonal system such that 

�9 i~j = 6~ and ~ ~0,t~ i = 1 (41) 
i 
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in which 1 is the (d+  3)-dimensional unit matrix. The solution of Eq. (38) 
for given initial data B(0) is then 

B(t) = ~ t~,wB(O)exp(z~t) 
i 

In terms of the macroscopic normal modes, defined by 

Ai = ~i~iB (42) 

the solution can be written simply as 

B(t) = ~ A~(t) 
i 

with 

Ai(t) = A,(0) exp(z~t) 

It should be mentioned that the field vector B, the matrix M, the 
eigenvectors ~ and ~i, and the normal modes A~ all depend on k, even 
though the dependence is not explicitly denoted. Evidently the next step in 
the calculation of the normal modes is the determination of the eigen- 
vectors and eigenvalues of M. Inspection of Eq. (39) reveals that M is 
block diagonal in the d - 1  transverse directions, corresponding to the 
shear modes denoted (for i = 1, 2,..., d -  1) by 

Z •  = - - v k  2 

-00 t 

A• = vk" ~ •  

with ui denoting a (d+  3)-component row unit vector whose components 
are all zero, except the (i + 4)th. As would be expected, these modes are the 
same as those for a pure fluid, (1) and are valid for all values of k. 

With the decoupling of the shear modes, the characteristic equation 
for the remaining eigenvalues becomes a quartic in zi whose coefficients are 
polynomials in k of up to degree eight. However, as shown in ref. 1, it is 
sufficient for the determination of the dominant time behavior of the time 
correlation functions to find the eigenvalues through O(k 2) and the eigen- 
vectors ~i and ~ to O(1). Accordingly, one can write 

M = k(M (o) + M (~)k) 
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in which M (~ and M (1) are independent of k, and expand the eigenvalues 
and eigenvectors as 

zi = k[z?)  + zll)k + O(k2)l 

r = 61o) + +ll)k + O(k ~) 

V i  = r I O )  -~ - V l l ) k  -.~ - O ( k  2) 

In this way one finds the following results for the macroscopic 
hydrodynamic modes. 

Shear modes, i =  1, 2 ..... d -  1: 

zzi  = - v k  2 

VJ_i = d0~ = u, (43) 

A l i =  Vk" ~ J 0 •  

Sound modes, o = _+1 (with the 1 omitted in subscripts): 

Zso. = - ( a i k c  + �89 k2) 

v~~ = �89 o, o, ape, o, o,...) 

dO (s~ ='(1, 0, 0, a/pc, 0, 0,...)* (44) 

A _ ,7 ,k(o) 
S~ - -  ~S~r ~ So. 

a s o  . = l ( p  k + a p e ~ "  v k )  

Diffusion modes, o =  _+1 (with the 1 omitted in subscripts): 

Z Do. = -tlo.k2/p 

, o  o.o.o. ) 
D ~  ~ + _ _ ~ _  \ A - ' - - - - 7 -  s ' 

ad~ 0, 1, r/o. - A s 0, 0, 0,... (45) 
.oo. = A~ ' 

A D  ~ _ .  ~(o )  - -  ~ Do'N" Dff 

f f  
a~.  - -  [ ( ~ - - A w ) S k + A ' ~ w k ]  

rl+ - t l _  

In these equations 

F , =  Dt + (L',u + 2L t ,  T~ + L'll T2fi 2) 
Cp 

1 = D , +  - [L"~--  2 Pl~ecpTL'~, + L[1 
pCp T k z 
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is the acoustic damping coefficient, with 7=Cp/C~, and use having been 
made of the thermodynamic relation 7-1=Z2c2 /cpT .  The quantities 
q., a = _+, are the roots 

q +_ = �89 + Aw + ~ t/2) 

of the quadratic equation 

( ~ _ + - A ~ ) ( , + - A ~ ) - A ' , A L - , ~ - ( A ~ + A ~ ) ' 7 •  ~ ' = 0  (46) 

with the discriminant 

= (As + A~)~- 4(A,A ~ - A'sAL) 

It is not difficult to show from Eqs. (32), (33), and (37) that 

1 
~ + ~  - - - ~ ( L ; . + 2 L ' , u V ~ +  ' ~ ~ ' = L i l t  IAT)+#wLll 

Cp~ 

and 

L L  

= c p T  + ~w L r(1 

~ ~ -  A ' f ~  = ; '~  ( L ' . . L ' .  - L ; ~ )  = ;~w ( L ' ~ L ' ; ,  - L~'s  
Cp T cp T 

It then follows that 

( L ' ~  . 4  f~w L,,2 
~ = \ c p T  fiwL';1 -- opT lu 

Now, stability of the mixture against phase separation requires /i~ >0. 
This, together with the positive entropy production conditions (ll),  then 
shows that ~,  A~ + A~, and A~A~-A'~A~ are all positive quantities, with 
~ / 2  <A~+A~.  Hence the roots r/_+ are both positive, as must be the case 
if the mode-coupling formula is to make sense. The following relations, 
obtained in similar fashion, will also be useful in the sequel: 

' L "  / c  T As + #TAs = - . . .  p 

L i t  i 
A 's ~- l u / C p  

A w  ~--- law 11 + [ I T L t u / C p  

,7~ - ~ + #,a's/r= , I~ -  ~L ' ;1  + f~LL/cp T 

(,7~ - Lau/c,~ r)(~o - &~ L';, ) = ~ L ;~/cp r 

~l+ +~1- = A ~ + A w  
- -  t l ~l + g -  -- A~Aw-- A~A~ 

(~+--Aw)(q - -A~)=(~+- -A , ) (~ - - -A , )= - -A ' ,A~  

(47) 
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In the terminology of ref. 1, which we follow in the sequel, the scalar 
quantities a• as~, and an~ are the hydrodynamic modes au and av 
appearing in the mode-coupling formula, except that: (1) they are presently 
macroscopic quantities, and so have to be translated into microscopic 
phase functions, and (2) when that has been done, they must then be 
normalized in the sense of Eq. (29). 

4.3. Microscopic Hydrodynamic Modes 

In obtaining the expressions for the microscopic hydrodynamic modes 
for a binary mixture, I follow rather closely the methods used in ref. 1 for 
a pure fluid. The essential step is to obtain microscopic expressions for the 
various Fourier components appearing in the macroscopic modes. 

4.3.1. Composition and Density Components. The usual 
expression for the instantaneous fluctuation of the density of species a from 
its uniform equilibrium value Pa is 

(a) 
6Pa( r, t)=pa( r, t ) - - P a = ~  mi6[ri(t) - r ] - p a  

i 

Recall that pa (as with other variables, such as p, p, w, s, etc.), without any 
explicit indication of dependence on r and t, denotes the unperturbed value. 

Fourier transformation as in Eq. (35) then yields 
(a) 

Pak = ~ m i e x p ( - i k ' r i ) - p a V b k o  
i 

in which V is the constant volume of the system. Here and in the 
other Fourier components to follow, the explicit notation of their time 
dependence arising from the time dependence of the molecular positions 
ri=ri(t)  has been suppressed for the sake of brevity. The sum, as already 
mentioned, is over the N~ particles of species a, with Na of course being 
one of the fluctuating variables in the grand canonical ensemble averages 
which will follow. Summing over both species of particles (a = 1, 2) gives 
the Fourier component of the overall mass density as 

Pk = Z m i  exp( - ik" r i )  - -  p V b k o  (48) 
i 

The composition variable w is the mass fraction of species 1, w(r, t) = 
pl(r, t)/p(r, t), so 

6w(r, t) =-1 (6pl -- w 6p) 
P 
1 -~1) (49) 

w k = - [  ~ m i e x p ( - i k ' r i ) - w  ~ miexp( - i k ' r~ ) ]  
jO - i .i 
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4.3.2. Momentum, Velocity, and Energy Components. In 
the sequel it will be convenient to express the macroscopic velocity com- 
ponents v k in terms of the components gu of the macroscopic momentum 
density g(r, t )=p( r ,  t)v(r, t). The corresponding fluctuation relation is 
simply fig(r, t )=pf iv( r ,  t), since, by assumption, v = g = 0  in the equi- 
librium state. Thus, 

1 
V k  ~ -  - -  gk (50) 

P 

and in microscopic form 

g(r, t ) = ~  mivi(t ) 6 [ r i ( t ) -  r] 
i 

gk = ~ mivi exp(-- ik" ri) 
i 

The local energy density is 

(51) 

e(r, t ) = ~  e i f [ r i ( t ) - - r  ] 
i 

in which ei is the energy of particle i already defined in Eq. (23). The 
ensemble average of e(r, t), assuming translational invariance, is just the 
equilibrium internal energy density e = U / V =  ( ~ ) / V ,  with U denoting the 
equilibrium internal energy of the system. The fluctuation in the local 
energy density is accordingly just fie(r, t) = e(r, t) - e, and its Fourier com- 
ponent is 

e k = ~ e i exp( -- ik" ri) - e VC~k0 (52) 
i 

4.3.3. Pressure and Entropy Components .  The standard ther- 
modynamic relation 

de = p T ds + h dp + pfi dw 

in which h = (e + p)/p is again the specific enthalpy, becomes the fluctua- 
tion relation 

fie = p T  fis + h fip + pl j fiw 

which allows us to express the Fourier component of the entropy fluctua- 
tion as 

Sk ~ -  p--~ ek -- -fi~ Pk - -  ~ Wk (53) 

822/57/3-4-18 
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In similar fashion, the chain rule gives 

(54) 

with the subscripts 

Pk = peek + PpPk + p~wk 

in which p is regarded as a function p(e ,p ,  w), 
indicating the usual partial derivatives. 

4.3.4. S u m m a r y .  In summary, Eqs.(48), (49), (51), and (52) 
express Pk, Wk, ek, and gk directly as microscopic phase functions, with 
Eqs. (50), (53), and (54) then giving vk, Sk, and Pk in the same terms. With 
use of those expressions, Eqs. (43)-(45) then give the (as yet unnormalized) 
hydrodynamic modes a• as~, and ao~ in the desired microscopic form. 

4.4. Or thonormal i ty  of the Hydrodynamic Modes 

The next step is the verification that the unnormalized modes a~ 
obtained to this point are in fact mutually orthogonal in the sense of 
Eq. (29), and then to normalize them. In the following subsections the 
various pairs of modes are considered seriatim. 

4.4.1. Shea r  Modes .  Using the symmetry and equipartition 
( ( m i v ~ )  = 1/fl = kBT)  properties of the equilibrium velocity distribution, 
one can obtain the relations 

P 
[-gk, gk] = ~  1 

I-gk, Pk'] = 0 (55) 

[-gk, Sk'] = 0 

[-gk, Wk] = 0 

from which there follow 

1 
[a • a i j ]  = - ~  6ij 

(56) 

[a• as~] = [a• aDa] = 0 

showing the orthogonality of these pairs of modes. 

4.4.2. S o u n d  Modes .  For a pair of sound modes, Eqs. (44) and 
(55) give, with use also of the vanishing of I-Pk, gk], 

[as , ,  as~,] =~ [-Pk, Pk] +frO-' (57) 
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At this point it becomes evident that this inner product can not be exactly 
zero for a # a', since it can be anticipated that [Pk, Pk] will depend on k. 
In fact, it will be shown that the right side of Eq. (57) does vanish to O(k2), 
as will also be the case for the approximate orthogonality of the remaining 
pairs of modes, Similarly, the eventual normalization of the sound and dif- 
fusion modes will be correct only to O(k2). That, however, will be sufficient 
for use in the calculation of the dominant time behavior of the time 
correlation functions according to the mode-coupling formula. 

To explore this question in more detail, consider the contribution 

= 

V 

eiej exp( ik " r~) I -- e2V2~kO) 

eiej cos(k" ro-) / - e2V26ko) 

to [Pk, Pk] which results when Eqs. (52) and (54) are used. It is evident 
that the i #  j terms do not vanish, and that 

[ek, ekl = [Co, Co] + O(k 2) 

It appears that it is unlikely that the various O(k 2) terms arising in 
[Pk, Pk] in this fashion will cancel, and thus we presume that likewise 

[Pk, Pk] = [P0, P0] q- O(k2) 

and similarly for other inner products among Pk, Sk, Wk, etc. In the sequel, 
for the sake of brevity, the explicit notation of the O(k 2) terms will be 
omitted. 

Appendix A gives, following closely the corresponding discussion in 
ref. 1 for a pure fluid, the derivations of the binary inner products of the 
general form [ao, b0] needed here and in the sequel. With [Po, Po] as 
given in Eq. (A19), Eq. (57) becomes 

[as~, as~,l = ~ ( l + cra')=~fl 6~, (58) 

which verifies the approximate mutual orthogonality of the sound modes. 
With use of Eqs. (44) and (45) and the vanishing of [-gk, Ski and 

[gk, Wk], the inner product of a sound mode and a diffusion mode is found 
to be 

[asa, aoa,] 2 ( q + - q _ )  {(q~-Aw)[po, So] +A ' [po ,  Wo]} 
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The inner products on the right side vanish, according to Eqs. (A20), and 
thus the sound and diffusion modes are mutually orthogonal. 

4.4.3. Diffusion Modes .  It remains to verify the orthogonality of 
the diffusion modes of different index and to calculate the approximate 
normalizing factor. Use of Eqs. (45), (A16), (A21), and (A22) gives 

[aD~, aD, ,] = aft' I ~pf~w(,7 + - , t -  ) 2 (,?~- ~w)(,7~,- 4w) (C~Aw + \---r-- ,+T) 

+ ~~ 2~J+) + 4:2] 

With the aid of Eqs. (37), (46), and (47) it can be shown that this vanishes 
for a r a', and for a = a' reduces to 

- ~ A ;  E~(,7~ - 4+)  - 4 ; 3  
[aD~, aD,,] - (59) /~p~+(~ + - , l _  ) ( ~ -  4,) 

4.4.4. Normalized Microscop ic  Modes .  With the aid of the 
normalizing factors in Eqs. (56), (58), and (59), the microscopic hydro- 
dynamic modes can now be written in their final, normalized form, in the 
small-wavenumber limit, as 

_( 
as~  \ 2 ~ J  (Po + ac[ .  go) (60) 

(7 

aDo(k) -- Ar -*l-) [ ( ~ + -  4w) So + ~ 'Wo]  

in which A, 
a• as~, and aD, will always refer to these normalized modes. 

= [ao,, aD,] 1/2 as given in Eq. (59). In the sequel, the symbols 

4.5. Orthogonality of the Modes and Currents 

It is also necessary to assure that the various currents (including their 
kinetic and potential parts) appearing in the Green-Kubo formulas are 
orthogonal to the hydrodynamic modes, and that they have vanishing 
equilibrium averages, as indicated in Eqs. (30) and (31). In the following 
subsections these conditions will be verified for the unprimed currents. 
That will be sufficient, since the time correlation functions for the other 
choices can be expressed in terms of those for the unprimed case. 
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4.5.1. Diffusion Current. Since J l + J 2 = 0 ,  it suffices to con- 
sider only the diffusion current for species 1, which is, according to 
Eqs. (25), (26), and (51), r162 =Jlx  with 

3~ = g~o 1)- wg o (61) 

and with the additional notation 
(1) 

g(1)__ 2 mivi (62) 
i 

From the symmetry properties of the velocity distribution and of the 
hydrodynamic modes, it is apparent that the diffusion current has a 
vanishing average and is orthogonal to the diffusion modes. Orthogonality 
with respect to the shear and sound modes follows from Eq. (55) and the 
similar relation 

pw 
[-g~o '), go] = - - f  1 (63) 

which lead to 

EJ1, go] = 0 (64) 

4.5.2. Heat  Curren t .  The unprimed heat current, as given by 
Eqs. (25) and (26), is seen to be odd in the particle velocities, so that the 
condition [ J , ,  1 ] = 0 is trivially satisfied, and also the orthogonality to the 
diffusion modes. It will be convenient to write it in the form 

J u  = "~e - -  hgo 

^ 1 ~,  roVi(j~" vi) (65) J e = ~  (eivi--~ ~ 
/ 

From the virial theorem and the properties of the velocity distribution it 
can be shown that 

1 [  ] ( d + 2 ) ( N )  
go, Z mjofvj - 2f12V 

J 

go, ~v, =~7~<e) 
"J (66) 

igo = ~-# (~/+ <N) k . r )  

go, r,jV,~o" v, =-~V(pV-(N)~T) 
l ,J  
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In these equations, 0 = 1 , Z~,j ~bv is the total interparticle potential energy of 
the system, ( N )  is the average number of particles in the system, and the 
internal energy is U= �89 T+ ( ~ ) .  It then follows that 

[Je, go] = ~ l  (67) 

This, together with Eq. (55), shows that 

[J . ,  go] =0  (68) 

and, as a result, that the heat current is orthogonal to the shear and sound 
modes. 

The kinetic part of the heat current is defined in the same way as in 
ref. 1, namely J(~/~)= f x), with 

J(~K)= ~ (~ m~v]-d~2) v~ (69) 

in order to satisfy the orthogonality conditions. The usual parity considera- 
tions then show that [3(K), 1 ] = O. AS before, one can show that 

Ig~ ,~. v~] = ( N ) .  flV (70) 

from which, with use also of Eqs. (66), there follows r~(K) Lo, , go] =0, and 
hence the orthogonality of the kinetic part of the heat current with respect 
to the shear modes. The last result and the usual parity considerations then 
show that it is also orthogonal to the sound and diffusion modes. Finally, 
since Ju and j (x )  have been seen to satisfy the necessary orthogonality 
conditions, it follows that the same is true of the potential part J~) .  

4.5.3. Shear Viscosity Current.  The shear viscosity current, as 
given in Eqs. (19) and (20), has an obvious separation into kinetic and 
potential parts in the form 

E miV,xVi, 
, (71) 

= _ !  2 ,  iT)= T~x~Y) 2 i,j x~ 8y ~ 

Note that T (/~ while even with respect to reversal of all the velocities, is - - x y  
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odd with respect to the reversal of (say) the x components only. Thus, it 
is clear that 

IT  (K) 1] 1 Txy ) = 0  (72) - - x y ,  =.~( (K) 

Similarly, T(~y ) is even with respect to a change of sign of all the coor- 
dinates, but odd with respect to such a change in (say) the x coordinates 
only. Thus, translational invariance leads to the desired condition 

(~) 1 
I- T~y, 1 ] = f f  ( T~y ) ) = 0 (73) 

With respect to the shear modes, which are overall odd functions of 
the velocities, the overall even character of both parts of the shear viscosity 
current shows that the corresponding orthogonality conditions are 
satisfied. 

Turning to the sound modes, one has with use of Eqs. (60), for A = K 
or q~, 

/ B ,,1/2 
�9 Txy ] Txy ] + Ego, } 

The preceding discussion of the shear modes shows that [go, Txy(A)] -0,- 
while [P0, (A) T~y ] 0 follows from Eq. (A17), since ( (m = Txy ) vanishes according 
to Eqs. (72) and (73). Similarly, with use also of Eqs. (A12) and (A18), one 
sees that [w0, (A) ,r(A) Txy ] and [So, (A) Txy ] are both zero. Thus, and therefore 1xy  

the total viscosity current, are orthogonal to the diffusion modes, as given 
in Eqs. (60). 

4.6. Longitudinal Viscosity Current 

When specialized to a binary mixture, Eq. (22) becomes 

@ ap 
, o  

= e o -  - -  Po-- wo (74) 
\ae/o,w ap e,w 7w 

in which tox x = Tx~ - p V. By the virial theorem (T~x)  = p V, so [ ~ ,  1 ] = 0 
is satisfied. Moreover, to~x is a microscopic function in the sense of the 
appendices, and so for any intensive thermodynamic function a, 
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I x 0p / 0p 
[<,r ao] = [P0, a o ] -  ~e)p t .p  2 leo, a o ] -  ~Pi )< ,m [Plo, ao] 

(75) 

Now suppose that ao is such that, for b o = Po, eo, Plo, P2o, Po, or Wo, 
the inner product [ao, bo] can be written as c(Ob/~)~,~ for some suitable 
choice of c, ~, fl, and 4, the same for all the mentioned choices of bo. Then 
[ ~ ,  ao] as given by either of Eqs. (75) vanishes by the chain rule. In 
Appendix A it is shown that the supposition is correct for ao = eo, Po, pro, 
P2o, Wo, Po, and So. In addition, [-~, go] = 0 by parity. Thus, ~ is seen to 
be orthogonal to all of the hydrodynamic modes. 

4.7. Contributing Mode Pairs 

As discussed in detail by Ernst et al., (1) the dominant 2 contributions to 
the long-time behavior of the time correlation functions, as given by the 
mode-coupling formula (27), arise from mode pairs (#, v) for which the 
coefficient zu(k)+zv(k) in the exponential is proportional to k2. -From 
Eqs. (43)-(45), it is evident that the pairs of modes shown in Table I, and 

Table l .  Contributing Pairs of Modes 

(Zi, •  Even i, j = 1, 2,..., d -  1 
(Sa, S - a) Even and odd cr = _+ 
(•  Odd i =  1, 2,..., d -  1; a =  _+ 
(De, D~') Even or, a '  = + 

having the indicated parities with respect to the particle velocities, satisfy 
that criterion. For any given time correlation function, symmetry con- 
siderations may still result in one or more of these pairs having vanishing 
contributions. 

Since the hydrodynamic modes have been calculated only to O(1) in 
k, the inner products in the mode-coupling formula (27) depend only on 

2 It should perhaps be mentioned, however, that Erpenbeck and Wood (9) found that retention 
of some of the O(k) contributions improved the agreement between the mode-coupling 
predictions and the molecular dynamics calculations of the velocity autocorrelation function 
at intermediate times for small, hard-sphere systems. 
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the direction ~ of k, and not on its magnitude. The integration over k can 
accordingly be separated into a time-independent angular part B~ ~2 and a 
time-dependent radial part Ruv(t): 

1 

I t ,  V 

8 ; 7  ~ = (2~) d d~[~r a~a~][J~ 2, a~a~] 
(76) 

fo R.~(t)= d k k  d X exp{[z~(k)+z~(k)]  t} 

=~r(~ (~%~t) ~/~ 

with z~(k)+ z~(k)= -mu~k 2, and with use having been made of the fact 
that the currents J~ and modes a~ are real. 

5. M U T U A L  D I F F U S I O N  

From the odd parity of the diffusion current J l - - J l x  and the parities 
given in Table I, one sees that the mode pairs which may contribute to the 
long-time tail of the mutual diffusion coefficient are the odd parts of the 
(S~, S -  ~r) pairs, and the (J_i, Da) pairs. 

5.1. (So, S -G)  Cont r ibu t ions  

The odd part of the product of two sound modes of opposite index is, 
from Eqs. (60), 

(as~(k) a s_ ~( - k))odd = a/~ ~.  go Po (77) 
pc 

The corresponding inner products appearing in the mode-coupling formula 
(76) are then, with use of Eq. (61), 

[J,x, (asoas-~)odd] = - - i "  { [g~01), gOPo] -- W[gO, gOP0] }" 1~ pc 

From Eqs. (55), (63), and (B9) one finds 

p (Opw/fl~ 1 
[g~~176176  c3p Js, w 

[ g ~ 1 7 6 1 7 6  Op Js, w 

(78) 
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Thus 

[)1~, (asoas ~)oad] = 0 (79) 

and the sound mode pairs make no contribution to the long-time tail of the 
mutual diffusion coefficient. 

5.2. (A_i, Dcr) Contributions 

With use of Eqs. (60), one finds 

[]1, a• --tl ) 

x { ( ~ - ~ ) [ J ~ ,  goso] + A'[J~, gowo] } "~• 

[J~, goso] = [g~o ~, goso] - w[go, goso] 

[31, goWo] = [g~o a), goWo] - wpgo, goWo] 

(80) 

Then, use of Eqs. (55), (63), (B7), and (B8) gives 3 

w (apllS) . ~ (apw~ 7 
[g~~176176 ~ \  a/7 )p,.+p~Tfw~t,~)n.pJ 1 

8p 
P 1 ['gGp/fl, ~li. (_~w)#.p]l 

l (opw) 1 [g~o '~, gowo] = p---PT~ t, aw )~,. 

1 ( ' P )  1 
Ego, goWo] =pfl2~--~ -~w #,p 

(81 

3 Note that it would be an error to use Eq. (B7) to write, with use also of Eq. (64), 

The difficulty is due to the presence of the ensemble-average quantity w in J l  as given m 
Eq. (61), with J l  consequently not having the purely microscopic character assumed for 
the quantity a o in Appendix B. A similar remark applies to other ternary inner products 
involving the currents. 
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Thus, Eqs. (80) become 

]AT 
[31, goSo] - -  f l T ~ w  1 

1 
01, gowol =~-~w 1 

G 
E J , ,  a• = flZ/~wA,(r/+ _ 

(82) 

~,E#~(~.- ~w)- ~'2 

When the last result and the eigenvalues from Eqs. (43) and (45) are used 
in the mode-coupling formulas (76), there results 

2E#T(r/~-- A w ) -  A'w] 2 Bll _ B l l  _ 
• Do -- D~, ' i -  (4n)a/2 de(d/2) pf13/22w(r/+ - r/ )2 A 2 

( r  

R• F (83 

d -  1 [ ~ ( ~ -  ~w) - ~ ] ~  

with the sum over the ( d -  1) shear modes and the permutation of the _Li 
and Da indices having been carried out in the last equation. 

5.3. Pll ( t )  

Since the _LD terms are the only contributions to pll(t),  and with use 
of Eqs. (32), (33), (46), (47), and (59), the last result can be written as 

d - 1  
P11(t) ~ d f l2 f iw( t l  + - ~ _  ) 

' ~ ' + t 2 T T  L l l ) / C p T ]  (84) x ~ 6 [ r I o _ ( L . . + 2 1 ~ T T L I "  ~2 2 t  

E4n(r/+ r/~) t/p ] "/2 

d -  1 V a ( . .  - L'~./Cp T) 
dflafw(tl + - rl_ ) ~ [4n(q + r/,) t/p ] d/2 

Note that L11=L]I=L~, ,  so that pll=p'~1=P;1. The first of 
Eqs. (84) bears a general resemblance to the corresponding Eq. (4.14) in 
ref. 2, but two discrepancies remain after allowing for the differences in 
notation: Pomeau has a factor d in place of the factor ( d -  1)/d, and the 
opposite sign for the overall result. 
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5.3.1. Di lu te  Limit  R e d u c t i o n .  It is to be expected that in the 
limit w ~ 0, in which the binary mixture becomes a pure fluid of particles 
of species 2, the present results for the asymptotic behavior of the time 
correlation functions for the mixture should reduce to those of Ernst 
etaL (~) for the pure fluid. In order to verify that this is the case, it is 
sufficient to assume, first, that the mixture exhibits a Henry's law behavior 
such that in this limit 

1 
fi ~ ~ i 3  ln w 

/iv ~ m~5~ In w 

1 

,fiw~flm~l) w 

with m (a) denoting the mass of a particle of species a, and, second, that 

Lll  = O(w) 

Lx , ,=O(w)  

Then consider the quantity 

/3 = l i m  ~ w L l l  _ f v 
w~O p J o  

~(t) dt 

and its corresponding time correlation function 

t~(t) = lim 
w~O p 

Under the above assumptions, one can show that in this dilute limit 

A s ~ Luu/r  p T L" " ,u/Cp T 

and also that the two roots ~/, of Eq. (46) approach the values L~u/c  p T and 
p/3. Then Eq. (84) reduces to 

d - 1  
fi(t) ~ --;-z--, [4=(v +/3)  t3 -d/2 

app 
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which is the familiar �9 (9) expression for the long-time tail of the velocity 
autocorrelation function of a pure fluid having kinematic viscosity v and 
self-diffusion coefficient/5. 

6. T H E R M A L  DIFFUSIV ITY  

The unprimed thermal diffusivity is given by the mode-coupling 
formula (76) as 

1 
B~Ru~(t) 

(85) 
1 

f dl~ [Jxx , a.(k) av ( -k ) ]  [J.x, a.(k) a~ ( -k ) ]  B1u; - (2n)d 

with the diffusion current given in Eq. (61) and the heat current in Eq. (65). 
Both currents are odd functions of the particle velocities, so the potentially 
contributing mode pairs are again (Sa, S--• and (• Da). But 
according to Eq. (79), the inner product of the diffusion current with 
(as~as_~)oda vanishes, and thus the sound modes make no contribution to 
the tail of p~u(t). Then Eqs. (85) reduce to 

d - - 1  

Plu(I)=PI.,XD(I) = 2 Z olU',o,~R• 
i=1 ~ (86) 

B1" _ 1 f d~[Jlx, aziaD,][j,x,a• ] 

including a factor of 2 arising from the interchange of the l i  and Do 
subscripts, and with [31,a• given in Eq. (82). With the aid of 
Eqs. (55), (60), (65)-(67), (81), (B7) and (B8) there results 

a(~/P)l/z {(r/~-Aw)[]~, goSo] +AwEa,, g0wo]} "[• [a~,a• (tl+--rl_)Ao 

[J , ,  goso] = [3~, goSo] -h [go ,  goSo] 

[3,, gowo] = [Je, gOWo] --h[go, goWo] 

[ae, goSo]=__Fl(O(Ph/~)x~ [~T (~(ph/~)~ ~l 
LpT\  aft /p,w+pflaw\ aw /~,pj (87) 

[&, goso] = 1 

1 (e(ph/fl)~ 1 
[Je '  g~176 = p-~ww \ aw .//Lp 

1 
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using also (ah/Ofi)p.w = -Tcp/fl and (8h/Ow)r = h = f i -  TilT. Thus, 

~(fl/P)l/2~• {(rl, _ Jw)[Cp 

With the aid of Eqs. (37) and (46) this can be reduced to 

EJ~, az,aD.] -fiZl)w(rl + -- ~l )(rl .--  J~) A~3'~ 

With use 
Eqs. (86) there results 

~ z J  / 

(88) 

of this result, together with Eqs. (47), (59), (82), and (83), in 

d -  1 cpT 

x ~ ~(~I~ - L'./cp T)(~I~ - f~wL~, + hL,~/cp T) 
[47z(r/+ q~) t/p] w/2 

(89) 

With regard to the dilute limit behavior of p~,(t), one expects it to 
vanish, since Llu vanishes in that limit. As given in Eq. (89), it is indeter- 
minate, but can be shown to vanish by treating . . . .  2 /~wL~ as a small quantity 
and expanding q~ to first order. 

6.1 =(KK)  tt(K~) and , ',(**) 
I J l u  �9 I " l u  �9 I"" 1 u 

Recalling that J l  has no potential part, one sees that 

p lu(O = p ~fK>(O + p ~f~)(t) 

with vlu'~(r162 = p]~.K)(t)= O. The kinetic part is 

d - - I  

p~f"~(t) • E Z ,,,KK B Zi, DoR• 
i = 1  a 

nl,,KK 1 d f  ~(K) a• , aiiaDo] o •  = (2~) 

(90) 
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With use of Eqs. (66), (70), (B7), and (B8) one obtains 

[ ~ K ) ,  a• ] _ a(f l /P) 1/2 {(qo _ Aw)E~(uK), goSo] 
( t l + - q _ ) A ,  

+ ,~ ~EJ~ ), gowo] )" ~• 
c o 

(K) Ea. , goSo] = ~t~ 1 

[J(~) goWo] = 0  ~ u  

~(/~/p)'/~ (,7o- Aw) cfi• 
[3g K~,a• fi2(t/+ _ t/_) A~ 

(91) 

in which the ideal-gas constant-pressure specific heat has been introduced 
as in ref. 1, 

o ( d + 2 ) k B ( N )  
cp - 2p V 

Then Eq. (90) can be reduced to 

(d -  1) c~ L;. v p~K) ( t )  
dfl2(q + -- tl_ ) Cp ~ [4x( t /+ q~) t /p] d/2 

The cross term can be calculated from the preceding results as 

p ( K • ) (  t~  = Plu( t) - -  n ( K X ) ~  t ]  
l u  \ ~ 2  V l u  ~ v !  

6.2. Single-Primed Thermal Diffusivity 

It follows from Eq. (32) that 

p',~(t) = p[ . ( t )  --/~p u ( t)  

which permits the asymptotic form of the 
calculated from Eqs. (84) and (89) as 

Plu ( t )  ~ 

correlation function to be 

d -  1 c p T  

dfl21~w(tl + - tl _ ) L;u 

x ~ a(~l~ - L'~/Cp T)( t l .  -- f~wL';1 - Tf~rL';u/cp T)  
,, [ 4 r e ( r / +  r / . )  t / p ]  a/2 
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In order to compare this result with that of Pomeau, 
Eqs. (37), (46), and (47) to write it as 

d - 1  a 
p'l.(t) 

dfl2fi~(tt + - 11 ) ~ [4n(r/+ q~) t/p] d/2 

x (L'.. + T/)TL,.) + [z~ + 
Cp / 

x (L',. + T f T L ; , ) -  Tfirrl,~] 

This agrees with Eq. (4.16b) in ref. 2, except for the overall sign. 

one can use 

6.3. Double-Pr imed Thermal Di f fusivi ty  

It follows from Eq. (33) that 

With use of Eqs. (47), (84), and (89), this leads to 

( d - 1 ) L [ .  a 
pL(  t) ~ d~201 + _ 11- ) ~ E4~(~/+ t/~) t/p ] a/2 

Incidentally, this result shows that p~'.(t) has, at long times, a sign opposite 
to that of L~'.. 

7. T H E R M A L  C O N D U C T I V I T Y  

The potentially contributing mode pairs are again the odd parts of the 
(S~, S -  er) pairs, and the (_Li, Da) pairs. Both types of pairs will be found 
to give nonvanishing contributions to the long-time behavior of p,,(t), and 
so it is convenient to write 

p. . ( t )  = p . . , ss ( t )  + p . . . ~ ( t )  

7.1. pu. .ss( t )  

For this case the mode-coupling formulas (76) become 

1 

1 f [i ~ B"s"~,s_ o = (2~)e j  d [J.x, (as.as-.)oad] 2 (92) 

1 
Rss( t )=~ F ( ~  (Fst) -a/2 
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With the aid of Eqs. (65), (67), (77), (78), and (B9), one has 

[J~, (as~as ~) odd] = a__ff_~ [j~, goPo]" pc 

[Ju, goPo] = [Je, goPo]-h[go,  goPo] 

[L, gopo]= \ @ /,,w 

P2(Oh) P c2 
[J~, goPo] = ~  ~pp 1 = ~ - 1  

s, w 

(93) 

Finally, use of this last result in Eq. (92) gives 

C 2 

P~,ss( t ) ~ d~2( 4~rst )d/2 (94) 

7.1.1. n(KK) ^(K~o) and n( * * )  
I ' ~ ' u u ,  S S  t I a  u u ,  S S  " I "  u u ,  S S  " 

p ( K K )  ( t ~ -  1 
uu, S S , ' ,  - -  2 2 B u u ' K K  D E ~" Sa, S _ a ~ " S S ~ ,  l )  

cr 

B~,KK 1 
--(2rc)af J dl~[J~x m, (as.as ,~)odd] 2 S~r, S -- a 

The kinetic part of P,u, ss ~s 

(95) 

From Eqs. (69) and (77) one finds 

2 ] 
- u  ' = ~ m i v i  u  g o P o  

2~ L ~ v~, go 

With use of Eqs. (66), (70), and (B9), and the thermodynamic relation 
(6~T/~p)s, w = o~TcZ/pcp, this reduces to 

E3(~ x), (asoas ~)odd] -- // Cp 

Then Eq. (95) becomes 

p~s)s(t) v (~Tc~ 2 Puu, ss(t) (96) 
~ \  Cp / 

822/57/3-4-19 
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The cross term in Pu~,ss is 

p(KO) (t~ ~ 1 Bs~,s-oRss(t) 
cr 

1 
f [ J u x ,  ( a s ~ a s - ~ ) o d d ]  Bu'KOs~,s-~-- (27t)d d~[J(~x m, (as~as ~ ~(~ 

Since J~)  ^ ~(K) = J ~ - - J .  , these quantities can be calculated in terms of the 
previous results, to give 

x~ ~TC~ ( l _ ~Tc ~ p.u, ss( t ) (97) P"~'ss(t)~ Cp Cp / 

In similar fashion, the potential term is 

p(~) ' "  ( c~Tc~2pu.,ss(t ) (98) uu, SSt~ j ~ 1 - -  Cp / 

7 .2 .  pu..• 
The shear and diffusion mode pairs give a contribution to p.u(t) given 

by 
d 1 

Z Z uu R " " • • Oa( t ) 

i=1 ~ (99) 
1 

B~. D~ -- (2~)d f d~l-Jux, aiiaD~] 2 

including a factor of 2 arising from the permutation of the Li and Da 
subscripts. With use of Eqs. (47), (59), and (88) in Eq. (99), one then finds 

• ~ a(,~ - Lu./c p T)(,~ - # . L n  + hL,u/Cp T) (100) 
[47r(r/+ rG) t/p ] a/2 

7.2.1 O(uKuK~)D , n ( K * )  an d  no**) The kinetic part of Pu..• is " , I ~ u u ,  •  z I ~ u u ,  L O  " 

given by 

d - - 1  

p(KK) ( t ]  uu, KK 

i = 1  a 

1 
• (2-~) a 3 d~[J(~Kx)' a• 
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In similar fashion to the calculation of Puu,• one finds with the use of 
Eq. (91) 

,,(Kin t,~ ( d -  1) fZw(cOe)2 ['~'"}/'" \2 
~"~'• dfl2(~+-~_) \ cp / 

cr 

x +  L"/c (101) 
(r / , ,  - , , , , / p  T)E4r@/+ r/,~) t / p ]  d/2 

The cross term ~'...•162 and potential t e r m  p(~uO, ID are most easily 
calculated in indirect fashion, by noting that, since J(.*)= J . -  j~m, one can 
write 

p(KO) ( t )  - -  ( l (Kr)  [r - -  ,~(KK) [t~ 
uu,-LD'~ --Uuu,•  I"uu, A_D}*! (102) 

p(~r ( t ]  (KT) (KK) ~, •  = p~ ,  . D(t) -- 2p u., aD(t )  + P~,  •  

in which 
d ! 

p (KT)  ( t~  uu, I D  ~,~! ~ ~ 2 uu, KT B •  •  t ) 
i a 

B..,KT - -  1 f • (2~) d d[EJ~ ), a• 

One then finds 

a •  

P(~"'~D(t)~dBZ01+ --~1-) ~ E4rc(r/+ r/,,)t/p] a/z (103) 

7.3. D i lu te  Limit Reduct ion  

In verifying that the present results reduce to those of Ernst et al. (u in 
the w ~ 0 limit, it is necessary to consider some differences in notation. 
Their 2 is the present L'~./T, and they write 

whereas here 

L'= = ~ fo  pL(t) at 

Thus, the two correlation functions should in fact be identical: 
p'.u(t)=c;o(t). Furthermore, under the assumptions regarding the dilute 
limit detailed in Section 5, it can be shown that the three thermal conduc- 
tivities Luu, L'.u, and L;u become equal, and thus equal to T2 for the pure 
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fluid. So it is to be expected that the present result for the long-time 
behavior of puu(t) should reduce to that given in ref. 1 for cA(t). In addition, 
it should be noted that the three thermal diffusivities Llu, L'~u, and L]', all 
approach zero, although not to the same order. 4 

With respect to the sound mode contributions, Eqs. (94), (96), and 
(98) agree exactly with the corresponding terms in Eqs. (32a), (33a), (34a), 
and (34c) of ref. 1. The cross term in Eq. (97) agrees with their Eq. (34b), 
except for sign. 5 

Turning to the contributions of the shear and diffusion mode pairs, it 
can be seen that p~.,• as given in Eq. (100) is indeterminate in the 

t t  a , ,  ~ L ,, 2 dilute limit, since L~'~ ~ 0 and ~/~--. L J c p T  or ktwLH. By treating #w ~. 
as a small quantity and considering the terms of that order in the approach 
of the q. to their limiting values, one can verify that Eq. (100) reduces to 

( d -  1) cp T 
p.~, • ~ dfl2[-4x(q + L'~/Cp T) t/p] a/2 

This agrees with the corresponding term in Eq. (32a) in ref. 1, note being 
taken that their Cp is per particle, rather than per unit mass. The kinetic 
and potential contributions, and also the cross term except for a similar 
sign error, can be likewise shown to reduce to the corresponding terms for 
the pure fluid in their Eqs. (34). 

7.4. Single-Pr imed Thermal Conduct iv i ty  

According to Eq. (32), 

p',,(t) = p,u(t) - 2/~p,,(t) + ~2p,,(t)  

can be calculated from the previous results for the unprimed correlation 
functions. With respect to the sound mode contributions, it has been seen 
that those contributions to the asymptotic time dependence of pl ,( t)  and 
pll(t)  vanish. Thus, P'.. ,ss(t)= P.. ,ss(t)  as given in Eq. (94). 

The shear-diffusion contribution is found from Eqs. (84), (89), and 
(100) to be 

d - 1  (cpT'] 2 
p L ,  l o ( t )  = d~2~w(~ + - ~ _  ] - L ' ;  . /  

x 2 cr(tl~ - L~,/c,  T)(tlr - fiwL;, - TfirL]'u/c, T) 2 
E4rKr/+ r/c~) t/p ] d/2 

4 It can be shown that if L]. = O(w), then L1, = O(w In w). 
5 It can easily be seen that the sign in ref. 1 must be changed in order to satisfy the relation 

_ KK +2KX+O +K~ . K+ -K+ 
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Upon comparing these results with those in Eq. (4.17b) of ref. 2, the 
following differences are noted: 

1. The first term in Pomeau's equation should be the sound mode 
contribution, as given in the present Eq. (94). Instead, it contains a factor 
1/7, where 7 = Cp/C~. 

2. The shear-diffusion term again differs in overall sign, and in addi- 
tion the minus sign in the factor (Cp- T~2r/fiT) should be changed to plus. 

7.5. Double-Pr imed Thermal  Conduct iv i ty  

The correlation function p",(t) can be calculated from the unprimed 
functions, according to Eq. (33), as 

p~(t) = p.~(t) - 2/~p l~(t ) +/~2pll(t) 

Once again, p~,ss(t)= p~,ss(t) as given in Eq. (94), while from Eqs. (84), 
(89), (100) one obtains 

( d -  1) cpT a(rlo -ft~L;a) 
P~'~'• ~ [ 4 - ~ + ~ / - ~  t / - ~  d/2 

with use again of the last of Eqs. (47). 

8. SHEAR V ISCOSITY 

The mode-coupling formula (76) for the shear viscosity correlation 
function becomes, with the use of Eqs. (71), 

1 q, A B  

~v (104) 

= - k ) 3  [Txy, a~(k) a v ( - k ) ]  (2rc)d d~ Lrz(A)--xy, au(k) a~( (B) 

in which A and B = K or ~b. Since the shear viscosity current, as given in 
Eqs. (71), is even in the particle velocities, it follows from Table I that the 
possibly contributing pairs of modes are (Da, Da'), (Sa, S - 0 )  . . . . .  and 
(• L j). 

From Eqs. (60) it can be seen that [-T~ A~, aD~aD~,] is a linear function 
of the three inner products (A) [-T(A) T(A) [T~y, SoSo], ~-xy , SOW0], and [ w0w0]. ~ x y  

According to Eqs . (Bl l ) - (B13) ,  all of those products vanish (because 
(T(x~)) = 0), and therefore the (Da, Da')  pairs make no contribution to the 
long-time behavior of p,(t). Then, symbolically, 

U q, SS~,~ ! 
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8.1. Shear  M o d e  Cont r ibu t ions  

With use of Eqs. (60), one finds 6 

rr( ) a• a •  fl ~ ~ ~ " -~-(A) = - - -  k •177  go~gofl] (105) 
U--xy , P 13 

From the symmetry of the velocity distribution and translational 
invariance, it can be seen that  [T!~ ), go~ go13] = O, so that 

p(Kr i t)  ~ ,~(#) tt~ ~ 0 

For  A = K one has 

lxy'  go~ go13] = ~  ~ mimjmll)i~vj13VlxVly 
J 

with the overbar  denoting the average over the equilibrium velocity dis- 
tr ibution for a fixed number  of particles. As in ref. 1, one can show that  

1 
vi~vjavtxVty - fl2rn ~ ~il~jl(6c~x613y + (~o:y,(~13x) 

(106) 
P (K) 

[ Txy , go~ gofl] = ~-5 (6,x313y + 3~y6 flx) 

and thereby reduce Eq. (105) to 

1 
E T(K)-xy , a• a• - k ) 3  = - ~ (k•177 ~- kLiyk• 

which is the same result as for a pure fluid. (~) The angular integrations in 
Eq. (104) are carried out as in ref. 1, and thus the result is the same as in 
Eq. (33b) in ref. 1 for a pure fluid, 

d 2 - 2  

p~, •177 (t) = p~K,f), ( t ) -  d (d  + 2) flz(sTrqt/p)a/2 

This also agrees with the corresponding term in Eq. (4.18) of ref. 2. 

6 The minus sign in Eq. (105) arises from taking 1~ cj(-k ) = -l~• It has no effect upon 
the final results. 
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8.2. Sound M o d e  Contr ibut ions 

With use again of Eqs. (60), one finds 

[T}~ ), (as~(k) a s -  o ( -  k)) ..... ] 

fl ( [T(A)  c 2 .~.(A) ) 
= L l x y  , 2pc 2 L -xy ,  PoPo] + ~ ~ go~ go~] /~/~  

According to Eq. (B10), (A) [T~y , PoPo] = 0 for both A = K and A = ~b, and it 
has already been noted that (~) [Txy ,  go~go~J =0.  Thus again the cross and 
potential terms vanish, 

p(K~)~t) ~ "~(~r ~ 0 
~, S S  ~, ~ I J rl, S S  

and it is left to consider, using again Eq. (106), 

T(K 1 ~ --xy, (as~(k) as ,~( -k) )  . . . .  ] = ~ kxky 

This then leads to 

1 p,,ss(t)  v n(KK)[t~ 
vn, ssto, ~ d ( d +  2) fl2(4uF~t)a/2 

which agrees with the corresponding pure fluid result of Eq. (33b) in ref. 1 
and also with the corresponding term in Eq. (4.18) of ref. 2. 

8.3. Summary  

As might be expected, the asymptotic time dependence of the shear 
viscosity correlation function p,( t )  is the same as for a pure fluid, with only 
the kinetic terms being nonzero. 

9. L O N G I T U D I N A L  A N D  BULK VISCOSITIES 

The mode-coupling formula (76) for the longitudinal viscosity is 

1 
p,(t) • ~ ~ B'.~R.v(t) 

l.lv 

B~v = ?-i~)a f d [J l ,  a~(k) a v ( -  k) ]2 

with the contributing mode pairs again being (Da, Da'), (Sa, S - a )  . . . . .  
and ( l i ,  _L j). 
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9.1. Shear Mode Contributions 

The calculation of [ ~ ,  a•177 is carried out in the same 
manner as in ref. 1, and with the same result 

[~, a• a• = -~ 

2 57f 

The resulting long-time tail is therefore the same as in ref. 1 for the pure 
fluid, 

2 ( d - 1 )  [ d +  1 7 - 1  {7- 1)21 
p,,•177 ~ --~2 ---~- +d \-~-f/ J (8rcvt) -an 

9.2. Sound Mode Contributions 

The required inner product is 

[Z ,  (as~(k) as ~(-k)) . . . .  ] 

- 2pc 2 [ ~ ,  PoPo] + c2 ~ k~/ca[~, go~go~] 

with the pure fluid result for the last term 

ap 
[~, go~ go~] = 6~ ~ [ 26~x - (-~e) p.w 1 

having been found in the course of the calculation of the shear-mode 
contribution. 

In calculating inner products such as I-~, Po Po], two points should 
be kept in mind, both relating to ~ not being a purely microscopic 
quantity, so that one must first use either of Eqs. (74). 

1. As noted in both refs. 1 and 2, considerable labor can be avoided 
by noting that, because of (a) the form of the first of Eqs. (74), (b) the fact 
that <Txx>=pV, and (c) the chain rule, terms involving first-order 
derivatives of a in Eqs. (B10)-(B13) will cancel. Thus, only the leading 
second-order derivative terms need to be considered. 

2. Caution is needed if the second of Eqs. (74) is used, because 
Eqs.(Bll)  (B13) are not valid for ao=Wo . [Somewhat by accident, 
Eq. (B10) happens to give the correct result in that case.] One must in 
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general first use Eq. (123) to evaluate [Wo, WoWo], [Wo, SoWo], etc.; but 
there are then first-order derivatives in the latter quantities which do not 
cancel with corresponding terms in [eo, WoWo], [po, WoWo], etc. In 
practice, it seemed to me easier to use the first of Eqs. (74), since eo, P~o, 
and P2o are all properly microscopic quantities. 

For [ ~ ,  PoPo] one finds the same result as for a pure fluid, 

() "1 pc2[2p Oc 
[J, ,  po po] = ~ L c 7p s,w ~---T 

Thus, the sound-mode contribution is the same as found in ref. 1, 

1 0c + d ] 2 +  2 ( d - 1 ) ' ~  

9.3. D i f fus ion  M o d e  C o n t r i b u t i o n s  

With the aid of Eqs. (60), one finds 

0-0 -r 

[#,, a o ~ a o o , ]  = A ~ A o , ( ~  + - ~ _  )2 { ( ~  - ~ w ) ( ~ , -  ~ w)[#,, s0s0] 

+ Aw [<.r WoWo] } (107) + A ' ( ~  + ~ , -  2,#i~)[~, SoWo] ,2 

Since this is independent of ~, Eqs. (76) reduce to 

I pt, DD( t )~  ~, [4n(tl.+tl~,)t/p] a/2[~,ajjoaD~,] 2 (108) 

The inner products appearing in Eq. (t07) can be computed as out- 
lined in the preceding subsection, with the following results: 

as, 
[ ~ ,  WoWo] p2~2 Lt, ae),,,w \a#22~. t-g-fis-~ )T.p 

- ,  (Ve)o, [(a2e ~e 
p lJ .u~ Lt, aw2)~.~ 
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= - 1  [-{'@~ ( 02e \ (Op~ (82p, t 
rt,, SoWo] pS~SL\ae).,wta-~)+\-dT,)<,~:\a~f-~l. 

pS/72,iw \ae)..w tL \a raw) .  ,i., \aw~),-A 

Lta-777w). ~w t~w2)T,A 

P [(~T),,-2fir(aP~ ] ;  (112) 

[t ,  SoSo] ~ ~e CaT ),,~ t~)..,~tT>-~),.~ 
+ (~) , , ,  {'c~2p2~ ] \-~T)p,a ~ (113) 

p2fl2(~e)o, ~{~?2e ] _ Of 

, L\~Ta),,a +2 (~-T)p,~ (~-T)p,r (114) 
-1 8p (O2e) 

- -  p2T=(-~e)o,w ~32e 

(O~e) ]_{Oe) [(~>) 
+ w~ k~w~)n ,A t,%h,~ L\mB~),,- 

8e 8p - 2wn (~ww)e,, [(~fi),, + wp (aO--~Pw)e,,]} (115) 

In these equations wp = - ~ / / 1  w. For each of the three inner products, the 
first form agrees with the expressions in ref. 2, Eqs. (C2)-(C4),  but the 
second form contains terms which are missing in ref. 2, Eqs. (C6a) (C6c). 
The last form in each case is useful in isolating the divergent #~w factors 
when examining the behavior in the dilute limit; there is no corresponding 
result in ref. 2 for [ ~ ,  SoSo]. 
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I was not able to verify the reduction of Eq. (108) to the form given 
in ref. 2, Eqs. (4.19), (4.20c), (4.21a)-(4.21c). No great simplification seems 
to occur over simply leaving the result in the form of Eqs. (107) and (108). 

With regard to the dilute limit reduction, it has already been noted 
that the shear and sound mode contributions have the same form as for the 
pure fluid. Thus, only the diffusion mode contributions need further discus- 
sion. One can show, under the same assumptions as earlier, that when 
[ ~ ,  aDoaD,,] as given in Eq. (107) is squared and inserted in Eq. (108), all 
the terms approach zero as w ~ 0 except for the particular term containing 
[~ ,  SoSo] 2, for which ~ = o-' such that ~/~ ~ L~JcpT.  That term reduces to 
the result 

(7 -1 )2  [ 1 +  1 c~, 4 
Pl, m)(t) ~ 2f12(87zDrt)a/2 L 

given for the pure fluid in ref. 1, with D r =  Luu/pC p T. 

9.4. Bulk Viscosity and Kinetic, Potential, and Cross Terms 

As already noted, the long-time behavior of the time-correlation func- 
tion pc(t) for the bulk viscosity can be calculated from the previously given 
results for p, ( t )  and pl(t), with use of Eq. (21). 

With respect to the breakdown of pl(t)  into its kinetic, potential, and 
cross-term contributions, it has been noted in ref. 1 that the appropriate 
definition of the kinetic part of the Green-Kubo current for the bulk 
viscosity is J ~ : =  0, with the consequences that p ~ =  Pc and p~K= p ~  = 0. 
It then follows from Eq. (21) that p~/X, p ~ ,  and p~r can be calculated from 
the expressions already given for p,, pffK, p~O, and pffO. 

APPENDIX A. BINARY INNER PRODUCTS [ao, bo] 

This Appendix follows ref. 1 closely in generalizing to the case of a 
binary mixture their expressions for inner products having the form 
I-ao, bo], under the following assumptions. Let A be an extensive phase 
function of the form A = A(r N, pN)= ~'i ai, with the proviso that a i is a 
phase function, such as e~, which depends upon microscopic variables only. 
That is, the function ai must not contain ensemble parameters such as fl, I~a, 
or V, or ensemble averages such as p, e, w, etc. For the sake of brevity, let 
such a quantity ao, and its associated quantities A and ai, be called 
"microscopic." Let ( A )  be the corresponding average extensive quantity, 
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and a =  (A ) /V  the corresponding average intensive density. The local 
microscopic fluctuation in a is then 

6a(r, t ) = ~  ai6[ri(t)-r ] - a  (A1) 
i 

with the Fourier component 

ak = Z ai exp( -- ik.  ri) - aV(~ko (A2) 
i 

Then the zero-wavenumber Fourier component is 

a o = A -  (A> (A3) 

which is just the fluctuation of the extensive function A from its equilibrium 
average. Finally, let B, bi, and b correspond to another function of the 
same microscopic type. Note that the Fourier components Pak, Pk, ek, and 
gk are all of this kind. [In the case of Pak, one would include in the sum 
in Eq. (A2) a factor equal to one if particle i is of type a, and equal to zero 
otherwise. ] 

The grand canonical average is 

Na[h dNa J [ dpNexp(--fl'~)A(rN'p N) ( A ) = =  
N I = 0  N 2 = 0  1 

in which va = fl#a and Z is the grand partition function, equal to the same 
double sum with the factor A(r N, pU) omitted. A standard calculation then 
yields the well-known fluctuation relation 

~?a) 1 
(A4) 

Now, since W = Y  ei, it is seen from Eq. (A3) that e o = W - ( 3 / f >  and 
a o = A - ( A ) .  Furthermore, all the k = 0 Fourier components are real, and 
thus Eq. (119) reduces to 

[ao, eo]=[eo, ao]=_ (a_~) 
Vl,V2 

(AS) 

giving the inner product in terms of a thermodynamic quantity. 
In analogous fashion one finds 

[poo, ao3 =( a a)~,.,o (A6) 
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in which the subscript v'a indicates the constancy of v2 if a =  1, etc. 
(Perhaps it should be mentioned that the subscript a refers to species a, 
while the function a = (A)/V.)  Summing over the two species gives 

~?a 

[po, ao] \Ov11~.v2 

In order to obtain an expression for an inner product like [Wo, ao], in 
which 

Wo = (P,o - wpo)/p (18) 

contains the average quantities w and p, and so does not satisfy the 
prescribed conditions for our general functions a and b, one simply writes 

1 w 
[Wo, ao] = -  [PlO, ao] ---- [Po, ao] (A9) 

P P 

Then Eqs. (A6) and (A7) give 

~3a 0a 

By standard thermodynamic manipulations, one can show that 

Oa 
c3a c3a 1 (~WW)//, p (Al l )  

where, as earlier, /iw = (~/i/~?w)r.p. Thus, 

[wo, ao] = ~ - ~  (-~w) ~,p (A12) 

Next, consider the problem of calculating inner products such as 
leo, a~], [Pao, a~], [Po, a;] ,  and [Wo, a ; ]  for a Fourier component a; 
which is not microscopic, but which can be expressed in terms of the 
Fourier components Pl0, Pso, and Co. Note that Po and So, as given in 
Eqs. (53) and (54) [see also (A8)], are of this type. The intensive variables 
Pl, Ps, and e can be taken as independent variables specifying the value of 
any other intensive thermodynamic variable. Thus, the fluctuation 6a' can 
be written as 

6a' = (da'~ 6pt+(Oa'~ 6pz +(~a'~ 6e (A13) 
\~PlJp2.e \OPsJm,e 20e JPl,P2 
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and its Fourier component as 

, =(63a'~ (Oa') (63a'~ 
a~ \63Pl,/ps,e p 10 + P20 + e o (A14) \63P2,] m,e \ 63e /pl,m 

Then, with use of Eqs. (A5) and (A6), one has, for example, 

[a~, eo] =( 63a'~ (63a') k63P,/p2,, [P,o, eo)] + ~P2 EP2o, eo] 
pl,e 

(63a'~ leo, eo] + k 63e/Pl,P2 
Opl ( 63a'~ 63192 

~__(63at~,63pl/]p2, e ( V )  VI,V2 __ \~2/]pl,e (V)Vl,V 2 

_ (Qa' ] ( ~flfl ) v, , ~,2 k 63e/pt,m 
63a' 

in which the last step follows from the chain rule. But this is just the result 
obtained by ignoring the fact that a; did not satisfy our original 
microscopic assumption, and applying Eq. (A5) directly. Similar results are 
found for [a;, Pao], [a;, Po], and [a;, w0]. Thus, Eqs. (A5)-(A7) and 
(A12) can be used for any intensive thermodynamic variable a and the 
corresponding ao. In particular, Eq. (A12) gives directly the relation 

1 
[-Wo, Wo] = (A16) 

With use of the preceding results and standard thermodynamic 
manipulations, one can then obtain the following formulas, valid for any 
intensive thermodynamic function a: 

=._(% 
[po, ao] flk63P/~,w 

(63a  
[So, ao] = - ~ \ - ~ J p ,  w - - -  

pT p,~ 

~pfl w \63WJfl, p 

(A17) 

(A18) 
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with the special cases 
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[Po, Po] = pc2/r (A19) 

[po, So] = [po, Wo] = 0 (A20) 

= /~ r (A21) [-So, S0] kBCp ~2 
p +r w 

[So, Wo] - (A22) 
rio# w 

APPENDIX B. TERNARY INNER PRODUCTS [ao, boco] 

Inner products containing three zero-wavenumber factors of the 
microscopic form given in Eq. (A3) can be written as 

1 
[ao, boco] = [-aobo, %] = ~  (6AfBfC> 

i 
=-~ [ <6A~6C>-- (6A6c><B>-- (6~6c>(A > ] 

(m) 

where 6 A = A - <A >, etc., and the order of the factors in the inner product 
is immaterial since the zero-wavenumber Fourier components are real. 
Each of the three terms on the right side contains a binary fluctuation 
factor of the form (6D6c> with D=AB, A, and B, respectively. Let us 
suppose that the function C has the property that 

~<D> 
<6D6c> : - -  (B2) 

~4c 

where ~c is one of the ensemble parameters. In Appendix A it has already 
been seen that this is so for the cases 

C = ~ ,  

C = Ma, 

Then Eq. (B1) becomes 

[ao, boco] V \  C~c 

1 ? 

~C= Ya 

- - - - - ( < A B > - ( A > < B > )  
V ~ c  

1 0 ~[ao, bo] 
0~c 

- - - - -  ( ( A -  ( A > ) ( B -  ( B > ) > -  (B3) 
V~c 
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In this way an inner product of three microscopic factors, at least one of 
which is of the type just assumed for Co, can be expressed in terms of a 
derivative of the inner product of the other two factors. Thus, one obtains 
the following relations: 

(8[ao'bo]) 
[ao, boeo] = - ~-~ v~,~ (B4) 

=(~[ao, bo]] (~?[ao, bo].~ + (B6) 
[ao, boPo] \ (~Vl ,],8, v2 \ (~V2 / fl, Vl 

_p (a[ao, bo].~ 

One can use these results, together with Eqs. (53), (54), and (A8), to obtain 
in addition 

* ( Eao, bol) [ao, boWo]=~--~\ Tw- J~,, 

1 (0[ao, bo]) 
eao, bo,o]= -~ 7~ ,.w--- 

- 1  8[ao, bo] L 
( Eao, ol  [ao, bopo]=~\ ~ :,,w 

p~ {aEao, bo3) 

(B7) 

(B8) 

(B9) 

Note the formal similarity of Eqs. (B4) (B9) to the corresponding 
Eqs. (A5)-(A7), (A12), (A17), and (A18). However, it must be emphasized 
that Eqs. (B4)-(B9) are in general valid only for quantities ao and bo which 
are microscopic. 

One can in addition obtain the following relations, valid for 
microscopic ao: 

•a 

[ao, PoPo] =fig L\@Vs,~- \ @ V s ,  w 

8a 
kOp2Js, w\t?vlJ~,v2 \8p2],.w 
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[ a~ ' w~ w~ ] = P-@ L ~-~2 ) ~. p + ~w -@P B.~ 

=--kB[[" 02a ~ _ l { O a ~  p T ~ r ( O a )  ] (BI2 ,  
Cao, SoWo] p2 LLa/ aCL #Lee).,, + 

Oh 
Eao, So lo ]  = 

dO cga 

p~w 
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